cs.AI updates on arXiv.org 08月12日
A Fuzzy Logic Prompting Framework for Large Language Models in Adaptive and Uncertain Tasks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于人类学习理论的模块化提示框架,支持大型语言模型在动态任务中的安全自适应使用,通过模糊支架逻辑和适应规则提高LLM行为结构的可解释性和目标一致性。

arXiv:2508.06754v1 Announce Type: new Abstract: We introduce a modular prompting framework that supports safer and more adaptive use of large language models (LLMs) across dynamic, user-centered tasks. Grounded in human learning theory, particularly the Zone of Proximal Development (ZPD), our method combines a natural language boundary prompt with a control schema encoded with fuzzy scaffolding logic and adaptation rules. This architecture enables LLMs to modulate behavior in response to user state without requiring fine-tuning or external orchestration. In a simulated intelligent tutoring setting, the framework improves scaffolding quality, adaptivity, and instructional alignment across multiple models, outperforming standard prompting baselines. Evaluation is conducted using rubric-based LLM graders at scale. While initially developed for education, the framework has shown promise in other interaction-heavy domains, such as procedural content generation for games. Designed for safe deployment, it provides a reusable methodology for structuring interpretable, goal-aligned LLM behavior in uncertain or evolving contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 模块化提示框架 安全应用 自适应学习
相关文章