cs.AI updates on arXiv.org 08月11日
Adaptive Heterogeneous Graph Neural Networks: Bridging Heterophily and Heterogeneity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对异构图中的异质性和异配性,提出了一种自适应异构图神经网络(AHGNN),通过考虑异配性分布和语义信息多样性,在七个真实世界图上的实验中展现出优越性能。

arXiv:2508.06034v1 Announce Type: cross Abstract: Heterogeneous graphs (HGs) are common in real-world scenarios and often exhibit heterophily. However, most existing studies focus on either heterogeneity or heterophily in isolation, overlooking the prevalence of heterophilic HGs in practical applications. Such ignorance leads to their performance degradation. In this work, we first identify two main challenges in modeling heterophily HGs: (1) varying heterophily distributions across hops and meta-paths; (2) the intricate and often heterophily-driven diversity of semantic information across different meta-paths. Then, we propose the Adaptive Heterogeneous Graph Neural Network (AHGNN) to tackle these challenges. AHGNN employs a heterophily-aware convolution that accounts for heterophily distributions specific to both hops and meta-paths. It then integrates messages from diverse semantic spaces using a coarse-to-fine attention mechanism, which filters out noise and emphasizes informative signals. Experiments on seven real-world graphs and twenty baselines demonstrate the superior performance of AHGNN, particularly in high-heterophily situations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

异构图神经网络 异配性 语义信息 自适应模型 实验验证
相关文章