cs.AI updates on arXiv.org 08月11日
ETA: Energy-based Test-time Adaptation for Depth Completion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种预训练深度补全模型的测试时适应方法,通过对抗扰动量化深度预测属于源数据分布的可能性,并在三个室内和三个室外数据集上取得了优于现有方法的性能。

arXiv:2508.05989v1 Announce Type: cross Abstract: We propose a method for test-time adaptation of pretrained depth completion models. Depth completion models, trained on some source'' data, often predict erroneous outputs when transferred totarget'' data captured in novel environmental conditions due to a covariate shift. The crux of our method lies in quantifying the likelihood of depth predictions belonging to the source data distribution. The challenge is in the lack of access to out-of-distribution (target) data prior to deployment. Hence, rather than making assumptions regarding the target distribution, we utilize adversarial perturbations as a mechanism to explore the data space. This enables us to train an energy model that scores local regions of depth predictions as in- or out-of-distribution. We update the parameters of pretrained depth completion models at test time to minimize energy, effectively aligning test-time predictions to those of the source distribution. We call our method ``Energy-based Test-time Adaptation'', or ETA for short. We evaluate our method across three indoor and three outdoor datasets, where ETA improve over the previous state-of-the-art method by an average of 6.94% for outdoors and 10.23% for indoors. Project Page: https://fuzzythecat.github.io/eta.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 测试时适应 能量模型
相关文章