cs.AI updates on arXiv.org 08月11日
A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了基于大型语言模型的搜索代理技术,分析了其架构、优化、应用和评估等方面,探讨了搜索代理在深度信息挖掘和实际应用中的潜力,并指出了该领域未来的研究方向。

arXiv:2508.05668v1 Announce Type: cross Abstract: The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 搜索代理 信息挖掘 技术综述 研究方向
相关文章