cs.AI updates on arXiv.org 08月11日
From Static to Dynamic: A Streaming RAG Approach to Real-time Knowledge Base
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出Streaming RAG,一种用于动态数据检索的统一框架,通过多向量余弦筛选、小批量聚类和计数过滤,优化原型集,提高检索质量,并在实时流上实现显著性能提升。

arXiv:2508.05662v1 Announce Type: cross Abstract: Dynamic streams from news feeds, social media, sensor networks, and financial markets challenge static RAG frameworks. Full-scale indices incur high memory costs; periodic rebuilds introduce latency that undermines data freshness; naive sampling sacrifices semantic coverage. We present Streaming RAG, a unified pipeline that combines multi-vector cosine screening, mini-batch clustering, and a counter-based heavy-hitter filter to maintain a compact prototype set. We further prove an approximation bound \$E[R(K_t)] \ge R^* - L \Delta\$ linking retrieval quality to clustering variance. An incremental index upsert mechanism refreshes prototypes without interrupting queries. Experiments on eight real-time streams show statistically significant gains in Recall\@10 (up to 3 points, p

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

动态数据检索 RAG框架 性能提升
相关文章