arXiv:2508.05662v1 Announce Type: cross Abstract: Dynamic streams from news feeds, social media, sensor networks, and financial markets challenge static RAG frameworks. Full-scale indices incur high memory costs; periodic rebuilds introduce latency that undermines data freshness; naive sampling sacrifices semantic coverage. We present Streaming RAG, a unified pipeline that combines multi-vector cosine screening, mini-batch clustering, and a counter-based heavy-hitter filter to maintain a compact prototype set. We further prove an approximation bound \$E[R(K_t)] \ge R^* - L \Delta\$ linking retrieval quality to clustering variance. An incremental index upsert mechanism refreshes prototypes without interrupting queries. Experiments on eight real-time streams show statistically significant gains in Recall\@10 (up to 3 points, p
