cs.AI updates on arXiv.org 08月11日
Safety of Embodied Navigation: A Survey
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从多角度分析了 embodied navigation 的安全问题,包括攻击策略、防御机制和评估方法,并探讨了未来研究方向。

arXiv:2508.05855v1 Announce Type: new Abstract: As large language models (LLMs) continue to advance and gain influence, the development of embodied AI has accelerated, drawing significant attention, particularly in navigation scenarios. Embodied navigation requires an agent to perceive, interact with, and adapt to its environment while moving toward a specified target in unfamiliar settings. However, the integration of embodied navigation into critical applications raises substantial safety concerns. Given their deployment in dynamic, real-world environments, ensuring the safety of such systems is critical. This survey provides a comprehensive analysis of safety in embodied navigation from multiple perspectives, encompassing attack strategies, defense mechanisms, and evaluation methodologies. Beyond conducting a comprehensive examination of existing safety challenges, mitigation technologies, and various datasets and metrics that assess effectiveness and robustness, we explore unresolved issues and future research directions in embodied navigation safety. These include potential attack methods, mitigation strategies, more reliable evaluation techniques, and the implementation of verification frameworks. By addressing these critical gaps, this survey aims to provide valuable insights that can guide future research toward the development of safer and more reliable embodied navigation systems. Furthermore, the findings of this study have broader implications for enhancing societal safety and increasing industrial efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

embodied navigation 安全分析 攻击策略 防御机制
相关文章