The Jim Rutt Show 08月08日
EP 316 Ken Stanley on the AI Representation Problem
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

肯·斯坦利与吉姆探讨了深度学习神经网络中的碎裂纠缠表示假说,讨论了AI系统的开放性、进化和Picbreeder实验的意义。他们还比较了Picbreeder与SGD网络,分析了内部表示的视觉差异、权重扫描实验、模块化与纠缠分解,并探讨了这对创造力、持续学习和泛化能力的影响。此外,还讨论了统一因子表示作为FER的替代方案,以及它与神经网络中'顿悟'的关系、大规模模型中的扩展考虑和证据,以及与生物进化和DNA表示的潜在联系。

🧬 碎裂纠缠表示假说(FER)认为,深度学习网络的内部表示是碎片化和相互缠绕的,而非结构化的,这解释了网络如何处理复杂任务。

🌱 Picbreeder实验展示了AI系统的开放进化潜力,通过简单的图像交互,AI可以创造出多样且复杂的视觉模式,证明了非目标导向学习的价值。

🔍 统一因子表示(UFR)作为一种替代方案,提出网络内部可能存在更简洁、共享的因子结构,有助于提高泛化能力和理解网络决策过程。

🔄 权重扫描和模块化/纠缠分解实验揭示了网络内部结构的复杂性,模块化方法可能有助于理解特定功能的分布,而纠缠结构则暗示了功能的交织。

🧠 '顿悟'(Grokking)与FER和UFR相关,指网络突然理解复杂概念的能力,可能源于内部表示的突然重组或简化,体现了AI学习的深度。

🔬 与生物进化的联系表明,AI的内部表示可能类似于生物进化中的DNA,通过变异和选择不断演化出新的功能和适应性,为理解生命和AI提供了新视角。

Jim talks with Ken Stanley about the Fractured Entanglement Representation hypothesis in deep learning neural networks. They discuss open-endedness in AI systems & evolution, the Picbreeder experiment & its significance, the objective paradox of finding things by not looking for them, comparisons between Picbreeder & SGD networks, visual differences in internal representations, weight sweep experiments, modular vs tangled decomposition, implications for creativity & continual learning & generalization abilities, Unified Factored Representation as an alternative to FER, the relationship to grokking in neural networks, scaling considerations & evidence in larger models, potential methods to achieve UFR, connections to biological evolution and DNA representation, and much more. Episode Transcript Why Greatness Cannot Be Planned: The Myth of the Objective, by Kenneth Stanley and Joel Lehman "Questioning Representational Optimism in Deep Learning: The Fractured Entanglement Representation Hypothesis" by Akarsh Kumar, Jeff Clune, Joel Lehman, and Kenneth Stanley JRS EP137 - Ken Stanley on Neuroevolution JRS EP130 - Ken Stanley on Why Greatness Cannot Be PlannedKenneth O. Stanley is the Senior Vice President of Open-Endedness at Lila Sciences.  He previously led a research team at OpenAI also on the challenge of open-endedness. Before that, he was Charles Millican Professor of Computer Science at the University of Central Florida and was also a co-founder of Geometric Intelligence Inc., which was acquired by Uber to create Uber AI Labs, where he was head of Core AI research. He is an inventor of popular algorithms including NEAT, novelty search, and CPPNs. He has won more than 10 best paper awards and his original 2002 paper on NEAT also received the 2017 ISAL Award for Outstanding Paper of the Decade 2002 - 2012 from the International Society for Artificial Life.  He is also a coauthor of the popular science book, Why Greatness Cannot Be Planned: The Myth of the Objective (published originally in the US by Springer), and has spoken widely on its subject.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 碎裂纠缠表示假说 开放性进化 Picbreeder 统一因子表示
相关文章