cs.AI updates on arXiv.org 08月06日
Artificial Intelligence and Generative Models for Materials Discovery -- A Review
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了AI在材料发现领域的应用,包括AI生成模型原理、材料表示、设计新催化剂、半导体、聚合物或晶体等应用,以及应对数据稀缺、计算成本、可解释性、合成性和数据集偏差等挑战的方法。

arXiv:2508.03278v1 Announce Type: cross Abstract: High throughput experimentation tools, machine learning (ML) methods, and open material databases are radically changing the way new materials are discovered. From the experimentally driven approach in the past, we are moving quickly towards the artificial intelligence (AI) driven approach, realizing the 'inverse design' capabilities that allow the discovery of new materials given the desired properties. This review aims to discuss different principles of AI-driven generative models that are applicable for materials discovery, including different materials representations available for this purpose. We will also highlight specific applications of generative models in designing new catalysts, semiconductors, polymers, or crystals while addressing challenges such as data scarcity, computational cost, interpretability, synthesizability, and dataset biases. Emerging approaches to overcome limitations and integrate AI with experimental workflows will be discussed, including multimodal models, physics informed architectures, and closed-loop discovery systems. This review aims to provide insights for researchers aiming to harness AI's transformative potential in accelerating materials discovery for sustainability, healthcare, and energy innovation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 材料发现 生成模型
相关文章