cs.AI updates on arXiv.org 08月06日
Large Language Model-based Data Science Agent: A Survey
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文全面分析了LLM在数据科学任务中的应用,包括关键设计原则和关键流程,提出了应用LLM的综合性回顾和双重视角框架。

arXiv:2508.02744v1 Announce Type: new Abstract: The rapid advancement of Large Language Models (LLMs) has driven novel applications across diverse domains, with LLM-based agents emerging as a crucial area of exploration. This survey presents a comprehensive analysis of LLM-based agents designed for data science tasks, summarizing insights from recent studies. From the agent perspective, we discuss the key design principles, covering agent roles, execution, knowledge, and reflection methods. From the data science perspective, we identify key processes for LLM-based agents, including data preprocessing, model development, evaluation, visualization, etc. Our work offers two key contributions: (1) a comprehensive review of recent developments in applying LLMbased agents to data science tasks; (2) a dual-perspective framework that connects general agent design principles with the practical workflows in data science.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 数据科学 应用分析 设计原则 双重视角
相关文章