cs.AI updates on arXiv.org 08月06日
Complete Evasion, Zero Modification: PDF Attacks on AI Text Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为PDFuzz的新型攻击方法,该攻击通过利用PDF文档中视觉文本布局与提取顺序之间的差异,对AI生成的文本检测器进行逃避攻击。实验结果表明,该方法能够使检测器性能大幅下降,同时保持视觉上的完整一致性。

arXiv:2508.01887v1 Announce Type: cross Abstract: AI-generated text detectors have become essential tools for maintaining content authenticity, yet their robustness against evasion attacks remains questionable. We present PDFuzz, a novel attack that exploits the discrepancy between visual text layout and extraction order in PDF documents. Our method preserves exact textual content while manipulating character positioning to scramble extraction sequences. We evaluate this approach against the ArguGPT detector using a dataset of human and AI-generated text. Our results demonstrate complete evasion: detector performance drops from (93.6 $\pm$ 1.4) % accuracy and 0.938 $\pm$ 0.014 F1 score to random-level performance ((50.4 $\pm$ 3.2) % accuracy, 0.0 F1 score) while maintaining perfect visual fidelity. Our work reveals a vulnerability in current detection systems that is inherent to PDF document structures and underscores the need for implementing sturdy safeguards against such attacks. We make our code publicly available at https://github.com/ACMCMC/PDFuzz.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI文本检测器 PDFuzz攻击 逃避攻击 PDF文档结构 检测器性能
相关文章