cs.AI updates on arXiv.org 08月06日
Counterfactual Reciprocal Recommender Systems for User-to-User Matching
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为CFRR的因果框架,用于缓解互推推荐系统中的偏差问题。实验表明,CFRR能够提高推荐准确性和公平性,在NDCG@10、长尾用户覆盖率和Gini暴露不平等度等方面均有显著提升。

arXiv:2508.01867v1 Announce Type: cross Abstract: Reciprocal recommender systems (RRS) in dating, gaming, and talent platforms require mutual acceptance for a match. Logged data, however, over-represents popular profiles due to past exposure policies, creating feedback loops that skew learning and fairness. We introduce Counterfactual Reciprocal Recommender Systems (CFRR), a causal framework to mitigate this bias. CFRR uses inverse propensity scored, self-normalized objectives. Experiments show CFRR improves NDCG@10 by up to 3.5% (e.g., from 0.459 to 0.475 on DBLP, from 0.299 to 0.307 on Synthetic), increases long-tail user coverage by up to 51% (from 0.504 to 0.763 on Synthetic), and reduces Gini exposure inequality by up to 24% (from 0.708 to 0.535 on Synthetic). CFRR offers a promising approach for more accurate and fair user-to-user matching.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

互推推荐系统 CFRR 因果框架 推荐准确性 公平性
相关文章