cs.AI updates on arXiv.org 08月05日
Forecasting LLM Inference Performance via Hardware-Agnostic Analytical Modeling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了LIFE框架,该框架用于预测大型语言模型在不同硬件上的推理性能,通过软件和模型优化分析,无需大量数据集基准测试,提高LLM在不同硬件平台上的部署效率。

arXiv:2508.00904v1 Announce Type: cross Abstract: Large language models (LLMs) have been increasingly deployed as local agents on personal devices with CPUs, NPUs and integrated GPUs. However, forecasting inference performance on devices with such heterogeneity remains challenging due to the dynamic compute and memory demands. Existing approaches rely on GPU benchmarking or machine learning-based latency predictors, which are often hardware-specific and lack generalizability. To this end, we introduce LIFE, a lightweight and modular analytical framework that is comprised of modular analytical model of operators, configurable to characterize LLM inference workloads in a hardware and dataset-agnostic manner. LIFE characterizes the influence of software and model optimizations, such as quantization, KV cache compression, LoRA adapters, chunked prefill, different attentions, and operator fusion, on performance metrics such as time-to-first-token (TTFT), time-per-output-token (TPOT) and tokens-per-second (TPS). LIFE enables performance forecasting using only hardware specifications, such as TOPS and memory bandwidth, without requiring extensive dataset benchmarking. We validate LIFE's forecasting with inference on AMD Ryzen CPUs, NPUs, iGPUs and NVIDIA V100 GPUs, with Llama2-7B variants, demonstrating the utility of LIFE in forecasting LLM performance through lens of system efficiency to enable efficient LLM deployment across different hardware platforms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LIFE框架 LLM性能预测 硬件优化
相关文章