cs.AI updates on arXiv.org 08月05日
A Message Passing Realization of Expected Free Energy Minimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于信息传递的EFE最小化方法,通过将EFE最小化转化为可处理的推理问题,有效提高政策推理效率,并在不确定性环境下展示出优于传统KL控制代理的规划能力和探索效率。

arXiv:2508.02197v1 Announce Type: new Abstract: We present a message passing approach to Expected Free Energy (EFE) minimization on factor graphs, based on the theory introduced in arXiv:2504.14898. By reformulating EFE minimization as Variational Free Energy minimization with epistemic priors, we transform a combinatorial search problem into a tractable inference problem solvable through standard variational techniques. Applying our message passing method to factorized state-space models enables efficient policy inference. We evaluate our method on environments with epistemic uncertainty: a stochastic gridworld and a partially observable Minigrid task. Agents using our approach consistently outperform conventional KL-control agents on these tasks, showing more robust planning and efficient exploration under uncertainty. In the stochastic gridworld environment, EFE-minimizing agents avoid risky paths, while in the partially observable minigrid setting, they conduct more systematic information-seeking. This approach bridges active inference theory with practical implementations, providing empirical evidence for the efficiency of epistemic priors in artificial agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EFE最小化 信息传递 不确定性环境 KL控制代理 政策推理
相关文章