cs.AI updates on arXiv.org 08月05日
Bayes-Entropy Collaborative Driven Agents for Research Hypotheses Generation and Optimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出HypoAgents框架,结合贝叶斯推理和信息熵搜索,实现科学假设自动生成,优化假设质量,提高生成假设的可靠性和准确性。

arXiv:2508.01746v1 Announce Type: new Abstract: The exponential growth of scientific knowledge has made the automated generation of scientific hypotheses that combine novelty, feasibility, and research value a core challenge. Existing methods based on large language models fail to systematically model the inherent in hypotheses or incorporate the closed-loop feedback mechanisms crucial for refinement. This paper proposes a multi-agent collaborative framework called HypoAgents, which for the first time integrates Bayesian reasoning with an information entropy-driven search mechanism across three stages-hypotheses generation, evidence validation, and hypotheses Refinement-to construct an iterative closed-loop simulating scientists' cognitive processes. Specifically, the framework first generates an initial set of hypotheses through diversity sampling and establishes prior beliefs based on a composite novelty-relevance-feasibility (N-R-F) score. It then employs etrieval-augmented generation (RAG) to gather external literature evidence, updating the posterior probabilities of hypotheses using Bayes' theorem. Finally, it identifies high-uncertainty hypotheses using information entropy $H = - \sum {{p_i}\log {p_i}}$ and actively refines them, guiding the iterative optimization of the hypothesis set toward higher quality and confidence. Experimental results on the ICLR 2025 conference real-world research question dataset (100 research questions) show that after 12 optimization iterations, the average ELO score of generated hypotheses improves by 116.3, surpassing the benchmark of real paper abstracts by 17.8, while the framework's overall uncertainty, as measured by Shannon entropy, decreases significantly by 0.92. This study presents an interpretable probabilistic reasoning framework for automated scientific discovery, substantially improving the quality and reliability of machine-generated research hypotheses.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

科学假设 自动生成 贝叶斯推理 信息熵 HypoAgents
相关文章