cs.AI updates on arXiv.org 08月05日
BioDisco: Multi-agent hypothesis generation with dual-mode evidence, iterative feedback and temporal evaluation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种名为BioDisco的多代理框架,旨在解决现有自动化方法在生成新颖且基于证据的假设方面的难题。该框架结合语言模型推理和双重证据系统,提供迭代优化和验证,并具有高度灵活性和模块化设计,助力科学假设的发现。

arXiv:2508.01285v1 Announce Type: new Abstract: Identifying novel hypotheses is essential to scientific research, yet this process risks being overwhelmed by the sheer volume and complexity of available information. Existing automated methods often struggle to generate novel and evidence-grounded hypotheses, lack robust iterative refinement and rarely undergo rigorous temporal evaluation for future discovery potential. To address this, we propose BioDisco, a multi-agent framework that draws upon language model-based reasoning and a dual-mode evidence system (biomedical knowledge graphs and automated literature retrieval) for grounded novelty, integrates an internal scoring and feedback loop for iterative refinement, and validates performance through pioneering temporal and human evaluations and a Bradley-Terry paired comparison model to provide statistically-grounded assessment. Our evaluations demonstrate superior novelty and significance over ablated configurations representative of existing agentic architectures. Designed for flexibility and modularity, BioDisco allows seamless integration of custom language models or knowledge graphs, and can be run with just a few lines of code. We anticipate researchers using this practical tool as a catalyst for the discovery of new hypotheses.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多代理框架 科学假设 生物信息学 自动化方法 知识图谱
相关文章