cs.AI updates on arXiv.org 07月31日
On the Definition of Intelligence
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出一种基于样本保真度的AGI智能评估准则,强调智能的生成能力,并构建了相关形式化框架及实证协议,探讨了评估、安全和泛化等应用。

arXiv:2507.22423v1 Announce Type: new Abstract: To engineer AGI, we should first capture the essence of intelligence in a species-agnostic form that can be evaluated, while being sufficiently general to encompass diverse paradigms of intelligent behavior, including reinforcement learning, generative models, classification, analogical reasoning, and goal-directed decision-making. We propose a general criterion based on sample fidelity: intelligence is the ability, given sample(s) from a category, to generate sample(s) from the same category. We formalise this intuition as {\epsilon}-category intelligence: it is {\epsilon}-intelligent with respect to a category if no chosen admissible distinguisher can separate generated from original samples beyond tolerance {\epsilon}. We present the formal framework, outline empirical protocols, and discuss implications for evaluation, safety, and generalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AGI智能 评估准则 样本保真度 生成能力 形式化框架
相关文章