cs.AI updates on arXiv.org 07月30日
Latent Swap Joint Diffusion for 2D Long-Form Latent Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Swap Forward (SaFa),一种基于多视角扩散的模态无关音频和全景图生成方法,通过自我循环和参考引导的潜在交换技术,有效解决频谱失真问题,在音频和全景图生成中实现高效和高质量生成。

arXiv:2502.05130v3 Announce Type: replace-cross Abstract: This paper introduces Swap Forward (SaFa), a modality-agnostic and efficient method to generate seamless and coherence long spectrum and panorama through latent swap joint diffusion across multi-views. We first investigate the spectrum aliasing problem in spectrum-based audio generation caused by existing joint diffusion methods. Through a comparative analysis of the VAE latent representation of Mel-spectra and RGB images, we identify that the failure arises from excessive suppression of high-frequency components during the spectrum denoising process due to the averaging operator. To address this issue, we propose Self-Loop Latent Swap, a frame-level bidirectional swap applied to the overlapping region of adjacent views. Leveraging stepwise differentiated trajectories of adjacent subviews, this swap operator adaptively enhances high-frequency components and avoid spectrum distortion. Furthermore, to improve global cross-view consistency in non-overlapping regions, we introduce Reference-Guided Latent Swap, a unidirectional latent swap operator that provides a centralized reference trajectory to synchronize subview diffusions. By refining swap timing and intervals, we can achieve a cross-view similarity-diversity balance in a forward-only manner. Quantitative and qualitative experiments demonstrate that SaFa significantly outperforms existing joint diffusion methods and even training-based methods in audio generation using both U-Net and DiT models, along with effective longer length adaptation. It also adapts well to panorama generation, achieving comparable performance with 2 $\sim$ 20 $\times$ faster speed and greater model generalizability. More generation demos are available at https://swapforward.github.io/

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SaFa 多视角扩散 音频生成 全景图生成
相关文章