cs.AI updates on arXiv.org 07月28日
Smooth Reading: Bridging the Gap of Recurrent LLM to Self-Attention LLM on Long-Context Tasks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为Smooth Reading的chunk-wise推理方法,通过分块处理上下文信息,降低循环LLM的内存需求,显著缩小其与自注意力LLM在长文任务上的性能差距,同时保持高效性。

arXiv:2507.19353v1 Announce Type: cross Abstract: Recently, recurrent large language models (Recurrent LLMs) with linear computational complexity have re-emerged as efficient alternatives to self-attention-based LLMs (Self-Attention LLMs), which have quadratic complexity. However, Recurrent LLMs often underperform on long-context tasks due to their limited fixed-size memory. Previous research has primarily focused on enhancing the memory capacity of Recurrent LLMs through architectural innovations, but these approaches have not yet enabled Recurrent LLMs to match the performance of Self-Attention LLMs on long-context tasks. We argue that this limitation arises because processing the entire context at once is not well-suited for Recurrent LLMs. In this paper, we propose Smooth Reading, a chunk-wise inference method inspired by human reading strategies. Smooth Reading processes context in chunks and iteratively summarizes the contextual information, thereby reducing memory demands and making the approach more compatible with Recurrent LLMs. Our experimental results show that this method substantially narrows the performance gap between Recurrent and Self-Attention LLMs on long-context tasks, while preserving the efficiency advantages of Recurrent LLMs. Our Smooth Reading boosts SWA-3B-4k (a Recurrent LLM) from 5.68% lower to 3.61% higher performance than Self-Attention LLMs on LongBench. Besides, our method maintains the high efficiency, training 3x faster and inferring 2x faster at 64k context compared to Self-Attention LLMs. To our knowledge, this is the first work to achieve comparable performance using Recurrent LLMs compared with Self-Attention LLMs on long-context tasks. We hope our method will inspire future research in this area. To facilitate further progress, we will release code and dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

循环LLM 长文处理 平滑阅读法 性能提升 自注意力LLM
相关文章