cs.AI updates on arXiv.org 07月28日
Modeling Uncertainty: Constraint-Based Belief States in Imperfect-Information Games
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了在具有隐藏身份的博弈中,如何利用基于约束的模型和概率传播方法来表示信念状态,并评估了其在不同游戏中的表现。

arXiv:2507.19263v1 Announce Type: new Abstract: In imperfect-information games, agents must make decisions based on partial knowledge of the game state. The Belief Stochastic Game model addresses this challenge by delegating state estimation to the game model itself. This allows agents to operate on externally provided belief states, thereby reducing the need for game-specific inference logic. This paper investigates two approaches to represent beliefs in games with hidden piece identities: a constraint-based model using Constraint Satisfaction Problems and a probabilistic extension using Belief Propagation to estimate marginal probabilities. We evaluated the impact of both representations using general-purpose agents across two different games. Our findings indicate that constraint-based beliefs yield results comparable to those of probabilistic inference, with minimal differences in agent performance. This suggests that constraint-based belief states alone may suffice for effective decision-making in many settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

博弈决策 信念模型 约束满足问题 概率传播
相关文章