cs.AI updates on arXiv.org 07月25日
Retrieving Classes of Causal Orders with Inconsistent Knowledge Bases
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了一种利用LLMs从文本中提取因果知识的全新方法,通过一致性评估提升因果发现的可靠性,并在流行病学等领域的真实数据上验证了其有效性。

arXiv:2412.14019v3 Announce Type: replace Abstract: Traditional causal discovery methods often rely on strong, untestable assumptions, which makes them unreliable in real applications. In this context, Large Language Models (LLMs) have emerged as a promising alternative for extracting causal knowledge from text-based metadata, which consolidates domain expertise. However, LLMs tend to be unreliable and prone to hallucinations, necessitating strategies that account for their limitations. One effective strategy is to use a consistency measure to assess reliability. Additionally, most text metadata does not clearly distinguish direct causal relationships from indirect ones, further complicating the discovery of a causal DAG. As a result, focusing on causal orders, rather than causal DAGs, emerges as a more practical and robust approach. We present a new method to derive a class of acyclic tournaments, which represent plausible causal orders, maximizing a consistency score derived from an LLM. Our approach starts by calculating pairwise consistency scores between variables, resulting in a semi-complete partially directed graph that consolidates these scores into an abstraction of the maximally consistent causal orders. Using this structure, we identify optimal acyclic tournaments, focusing on those that maximize consistency across all configurations. We subsequently show how both the abstraction and the class of causal orders can be used to estimate causal effects. We tested our method on both well-established benchmarks, as well as, real-world datasets from epidemiology and public health. Our results demonstrate the effectiveness of our approach in recovering the correct causal order.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 因果发现 文本挖掘
相关文章