arXiv:2401.13408v3 Announce Type: replace Abstract: Perception occurs when individuals interpret the same information differently. It is a known cognitive phenomenon with implications for bias in human decision-making. Perception, however, remains understudied in machine learning (ML). This is problematic as modern decision flows, whether partially or fully automated by ML applications, always involve human experts. How might we account for cases in which two experts, e.g., interpret differently the same deferred instance or explanation from a ML model? Addressing this and similar questions requires a formulation of perception, particularly, in a manner that integrates with ML-enabled decision flows. In this work, we present a first approach to modeling perception causally. We define perception under causal reasoning using structural causal models (SCM). Our approach formalizes individual experience as additional causal knowledge that comes with and is used by the expert decision-maker in the form of a SCM. We define two kinds of probabilistic causal perception: structural perception and parametrical perception. We showcase our framework through a series of examples of modern decision flows. We also emphasize the importance of addressing perception in fair ML, discussing relevant fairness implications and possible applications.
