cs.AI updates on arXiv.org 07月23日
Out-of-Distribution Generalization in the ARC-AGI Domain: Comparing Execution-Guided Neural Program Synthesis and Test-Time Fine-Tuning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章通过在ARC-AGI领域进行可控的生成泛化实验,比较了神经程序合成和测试时微调方法,发现执行引导的神经程序合成在构建新解决方案方面优于其他算法,并揭示了测试时微调在ARC-AGI成功的关键在于激发分布内知识。

arXiv:2507.15877v1 Announce Type: new Abstract: We run a controlled compositional generalization experiment in the ARC-AGI domain: an open-world problem domain in which the ability to generalize out-of-distribution is, by design, an essential characteristic for success. We compare neural program synthesis and test-time fine-tuning approaches on this experiment. We find that execution-guided neural program synthesis outperforms all reference algorithms in its ability to compose novel solutions. Our empirical findings also suggest that the success of TTFT on ARC-AGI lies mainly in eliciting in-distribution knowledge that the LLM otherwise fails to rely on directly.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经程序合成 ARC-AGI 测试时微调 泛化能力 知识激发
相关文章