cs.AI updates on arXiv.org 07月22日
Predictive Process Monitoring Using Object-centric Graph Embeddings
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于对象中心事件日志的预测过程监控模型,通过图注意力网络和LSTM网络预测未来过程行为,在真实和合成事件日志上表现优异。

arXiv:2507.15411v1 Announce Type: new Abstract: Object-centric predictive process monitoring explores and utilizes object-centric event logs to enhance process predictions. The main challenge lies in extracting relevant information and building effective models. In this paper, we propose an end-to-end model that predicts future process behavior, focusing on two tasks: next activity prediction and next event time. The proposed model employs a graph attention network to encode activities and their relationships, combined with an LSTM network to handle temporal dependencies. Evaluated on one reallife and three synthetic event logs, the model demonstrates competitive performance compared to state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

对象中心 预测过程监控 图注意力网络 LSTM网络
相关文章