cs.AI updates on arXiv.org 07月22日
Complexity of Faceted Explanations in Propositional Abduction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统分析了命题归因推理的计算复杂性,并引入了命题归因的要素和解释间距离,以更好地理解解释的异同。

arXiv:2507.14962v1 Announce Type: new Abstract: Abductive reasoning is a popular non-monotonic paradigm that aims to explain observed symptoms and manifestations. It has many applications, such as diagnosis and planning in artificial intelligence and database updates. In propositional abduction, we focus on specifying knowledge by a propositional formula. The computational complexity of tasks in propositional abduction has been systematically characterized - even with detailed classifications for Boolean fragments. Unsurprisingly, the most insightful reasoning problems (counting and enumeration) are computationally highly challenging. Therefore, we consider reasoning between decisions and counting, allowing us to understand explanations better while maintaining favorable complexity. We introduce facets to propositional abductions, which are literals that occur in some explanation (relevant) but not all explanations (dispensable). Reasoning with facets provides a more fine-grained understanding of variability in explanations (heterogeneous). In addition, we consider the distance between two explanations, enabling a better understanding of heterogeneity/homogeneity. We comprehensively analyze facets of propositional abduction in various settings, including an almost complete characterization in Post's framework.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

命题归因推理 计算复杂性 解释分析
相关文章