cs.AI updates on arXiv.org 07月21日
Towards scientific discovery with dictionary learning: Extracting biological concepts from microscopy foundation models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合稀疏字典学习与PCA预处理的生物图像分析方法,从细胞显微镜图像中提取生物学上有意义的概念,如细胞类型和基因扰动,为生物图像的机制解释提供了新的方向。

arXiv:2412.16247v3 Announce Type: replace-cross Abstract: Sparse dictionary learning (DL) has emerged as a powerful approach to extract semantically meaningful concepts from the internals of large language models (LLMs) trained mainly in the text domain. In this work, we explore whether DL can extract meaningful concepts from less human-interpretable scientific data, such as vision foundation models trained on cell microscopy images, where limited prior knowledge exists about which high-level concepts should arise. We propose a novel combination of a sparse DL algorithm, Iterative Codebook Feature Learning (ICFL), with a PCA whitening pre-processing step derived from control data. Using this combined approach, we successfully retrieve biologically meaningful concepts, such as cell types and genetic perturbations. Moreover, we demonstrate how our method reveals subtle morphological changes arising from human-interpretable interventions, offering a promising new direction for scientific discovery via mechanistic interpretability in bioimaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

稀疏字典学习 生物图像分析 机制解释
相关文章