cs.AI updates on arXiv.org 07月15日
Prune 'n Predict: Optimizing LLM Decision-making with Conformal Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CROQ和CP-OPT框架,通过优化预测集大小提升大型语言模型在关键领域的决策准确性。

arXiv:2501.00555v2 Announce Type: replace-cross Abstract: Large language models (LLMs) are empowering decision-making in several applications, including tool or API usage and answering multiple-choice questions (MCQs). However, incorrect outputs pose significant risks in high-stakes domains like healthcare and finance. To quantify LLM uncertainty and thereby mitigate these risks, recent works employ conformal prediction (CP), a model- and distribution-agnostic framework that uses LLM outputs to generate a \emph{prediction set} containing the true answer with high probability. Leveraging CP, we propose \emph{conformal revision of questions} (CROQ), which revises the question by narrowing down the available choices to those in the prediction set and asking the LLM the revised question. We expect LLMs to be more accurate on revised questions with fewer choices. Furthermore, we expect CROQ to be effective when the prediction sets from CP are small. Commonly used logit scores often lead to large sets, diminishing CROQ's effectiveness. To overcome this, we propose CP-OPT, an optimization framework to learn scores that minimize set sizes while maintaining coverage. Our extensive experiments on MMLU, ToolAlpaca, and TruthfulQA datasets with multiple LLMs show that CROQ improves accuracy over the standard inference, with more pronounced gains when paired with CP-OPT.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 决策准确性 优化框架 预测集
相关文章