cs.AI updates on arXiv.org 07月14日
ChainEdit: Propagating Ripple Effects in LLM Knowledge Editing through Logical Rule-Guided Chains
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出ChainEdit框架,结合知识图谱逻辑规则与LLM推理能力,实现知识链式更新,提升逻辑一致性,在逻辑泛化方面比基线提高30%以上。

arXiv:2507.08427v1 Announce Type: cross Abstract: Current knowledge editing methods for large language models (LLMs) struggle to maintain logical consistency when propagating ripple effects to associated facts. We propose ChainEdit, a framework that synergizes knowledge graph-derived logical rules with LLM logical reasoning capabilities to enable systematic chain updates. By automatically extracting logical patterns from structured knowledge bases and aligning them with LLMs' internal logics, ChainEdit dynamically generates and edits logically connected knowledge clusters. Experiments demonstrate an improvement of more than 30% in logical generalization over baselines while preserving editing reliability and specificity. We further address evaluation biases in existing benchmarks through knowledge-aware protocols that disentangle external dependencies. This work establishes new state-of-the-art performance on ripple effect while ensuring internal logical consistency after knowledge editing.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ChainEdit LLM知识编辑 逻辑一致性 知识图谱 逻辑泛化
相关文章