cs.AI updates on arXiv.org 07月10日
Sample-Efficient Reinforcement Learning Controller for Deep Brain Stimulation in Parkinson's Disease
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SEA-DBS的样本高效演员-评论家框架,用于解决基于强化学习的自适应神经刺激的核心挑战,并通过模拟实验证明了其在资源受限环境下的实用性和有效性。

arXiv:2507.06326v1 Announce Type: cross Abstract: Deep brain stimulation (DBS) is an established intervention for Parkinson's disease (PD), but conventional open-loop systems lack adaptability, are energy-inefficient due to continuous stimulation, and provide limited personalization to individual neural dynamics. Adaptive DBS (aDBS) offers a closed-loop alternative, using biomarkers such as beta-band oscillations to dynamically modulate stimulation. While reinforcement learning (RL) holds promise for personalized aDBS control, existing methods suffer from high sample complexity, unstable exploration in binary action spaces, and limited deployability on resource-constrained hardware. We propose SEA-DBS, a sample-efficient actor-critic framework that addresses the core challenges of RL-based adaptive neurostimulation. SEA-DBS integrates a predictive reward model to reduce reliance on real-time feedback and employs Gumbel Softmax-based exploration for stable, differentiable policy updates in binary action spaces. Together, these components improve sample efficiency, exploration robustness, and compatibility with resource-constrained neuromodulatory hardware. We evaluate SEA-DBS on a biologically realistic simulation of Parkinsonian basal ganglia activity, demonstrating faster convergence, stronger suppression of pathological beta-band power, and resilience to post-training FP16 quantization. Our results show that SEA-DBS offers a practical and effective RL-based aDBS framework for real-time, resource-constrained neuromodulation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑刺激 自适应神经刺激 强化学习
相关文章