cs.AI updates on arXiv.org 07月09日
Psychometric Item Validation Using Virtual Respondents with Trait-Response Mediators
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用大型语言模型(LLM)模拟虚拟受访者的框架,以生成具有构念效度的心理测量问卷项目,降低传统问卷调查成本,并提升问卷质量。

arXiv:2507.05890v1 Announce Type: cross Abstract: As psychometric surveys are increasingly used to assess the traits of large language models (LLMs), the need for scalable survey item generation suited for LLMs has also grown. A critical challenge here is ensuring the construct validity of generated items, i.e., whether they truly measure the intended trait. Traditionally, this requires costly, large-scale human data collection. To make it efficient, we present a framework for virtual respondent simulation using LLMs. Our central idea is to account for mediators: factors through which the same trait can give rise to varying responses to a survey item. By simulating respondents with diverse mediators, we identify survey items that robustly measure intended traits. Experiments on three psychological trait theories (Big5, Schwartz, VIA) show that our mediator generation methods and simulation framework effectively identify high-validity items. LLMs demonstrate the ability to generate plausible mediators from trait definitions and to simulate respondent behavior for item validation. Our problem formulation, metrics, methodology, and dataset open a new direction for cost-effective survey development and a deeper understanding of how LLMs replicate human-like behavior. We will publicly release our dataset and code to support future work.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 心理测量 问卷生成 虚拟受访者 构念效度
相关文章