cs.AI updates on arXiv.org 07月08日
Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为RANA的新型关系感知网络,用于解决知识图谱补全任务中的零损失问题和实体不同上下文下的不同表示问题,实验表明其在两个基准数据集上优于现有模型。

arXiv:2306.09519v2 Announce Type: replace-cross Abstract: Few-shot knowledge graph completion (FKGC) task aims to predict unseen facts of a relation with few-shot reference entity pairs. Current approaches randomly select one negative sample for each reference entity pair to minimize a margin-based ranking loss, which easily leads to a zero-loss problem if the negative sample is far away from the positive sample and then out of the margin. Moreover, the entity should have a different representation under a different context. To tackle these issues, we propose a novel Relation-Aware Network with Attention-Based Loss (RANA) framework. Specifically, to better utilize the plentiful negative samples and alleviate the zero-loss issue, we strategically select relevant negative samples and design an attention-based loss function to further differentiate the importance of each negative sample. The intuition is that negative samples more similar to positive samples will contribute more to the model. Further, we design a dynamic relation-aware entity encoder for learning a context-dependent entity representation. Experiments demonstrate that RANA outperforms the state-of-the-art models on two benchmark datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识图谱补全 关系感知网络 RANA 实体表示 模型性能
相关文章