cs.AI updates on arXiv.org 07月08日
Improving Low-Resource Dialect Classification Using Retrieval-based Voice Conversion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出使用检索式语音转换(RVC)作为数据增强方法,解决方言数据稀缺问题,提升低资源德国方言分类任务性能。

arXiv:2507.03641v1 Announce Type: cross Abstract: Deep learning models for dialect identification are often limited by the scarcity of dialectal data. To address this challenge, we propose to use Retrieval-based Voice Conversion (RVC) as an effective data augmentation method for a low-resource German dialect classification task. By converting audio samples to a uniform target speaker, RVC minimizes speaker-related variability, enabling models to focus on dialect-specific linguistic and phonetic features. Our experiments demonstrate that RVC enhances classification performance when utilized as a standalone augmentation method. Furthermore, combining RVC with other augmentation methods such as frequency masking and segment removal leads to additional performance gains, highlighting its potential for improving dialect classification in low-resource scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

方言分类 数据增强 语音转换
相关文章