cs.AI updates on arXiv.org 07月08日
A Data-Transparent Probabilistic Model of Temporal Propositional Abstraction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种数据驱动时序命题推理的新概率模型,旨在解决传统模型中的数据稀缺、假设空间大和数据不透明等问题,通过反向探索领域知识从数据中生成,实现参数学习和时序推理的无区分,并解决零频率问题,提高数据透明度。

arXiv:2301.08509v3 Announce Type: replace Abstract: Standard probabilistic models face fundamental challenges such as data scarcity, a large hypothesis space, and poor data transparency. To address these challenges, we propose a novel probabilistic model of data-driven temporal propositional reasoning. Unlike conventional probabilistic models where data is a product of domain knowledge encoded in the probabilistic model, we explore the reverse direction where domain knowledge is a product of data encoded in the probabilistic model. This more data-driven perspective suggests no distinction between maximum likelihood parameter learning and temporal propositional reasoning. We show that our probabilistic model is equivalent to a highest-order, i.e., full-memory, Markov chain, and our model requires no distinction between hidden and observable variables. We discuss that limits provide a natural and mathematically rigorous way to handle data scarcity, including the zero-frequency problem. We also discuss that a probability distribution over data generated by our probabilistic model helps data transparency by revealing influential data used in predictions. The reproducibility of this theoretical work is fully demonstrated by the included proofs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据驱动 时序推理 概率模型 数据稀缺 透明度
相关文章