cs.AI updates on arXiv.org 07月04日
Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出LLM在证明生成任务中性能有限,归因于训练数据中存在不理想顺序。通过验证直觉顺序对证明生成的影响,实验证明优化数据顺序可显著提升模型性能。

arXiv:2411.00863v2 Announce Type: replace-cross Abstract: In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof's soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial -- with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 证明生成 数据顺序 性能提升 直觉顺序
相关文章