cs.AI updates on arXiv.org 07月03日
TeamCMU at Touch\'e: Adversarial Co-Evolution for Advertisement Integration and Detection in Conversational Search
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于RAG对话系统的广告管理模块化方法,通过广告重写器和广告分类器实现无缝广告整合和检测,并通过实验验证了其有效性。

arXiv:2507.00509v1 Announce Type: cross Abstract: As conversational search engines increasingly adopt generation-based paradigms powered by Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), the integration of advertisements into generated responses presents both commercial opportunities and challenges for user experience. Unlike traditional search, where advertisements are clearly delineated, generative systems blur the boundary between informational content and promotional material, raising concerns around transparency and trust. In this work, we propose a modular pipeline for advertisement management in RAG-based conversational systems, consisting of an ad-rewriter for seamless ad integration and a robust ad-classifier for detection. We leverage synthetic data to train high-performing classifiers, which are then used to guide two complementary ad-integration strategies: supervised fine-tuning of the ad-rewriter and a best-of-N sampling approach that selects the least detectable ad-integrated response among multiple candidates. Our evaluation focuses on two core questions: the effectiveness of ad classifiers in detecting diverse ad integration strategies, and the training methods that best support coherent, minimally intrusive ad insertion. Experimental results show that our ad-classifier, trained on synthetic advertisement data inspired by marketing strategies and enhanced through curriculum learning, achieves robust detection performance. Additionally, we demonstrate that classifier-guided optimization, through both fine-tuning and best-of-N sampling, significantly improves ad stealth, enabling more seamless integration. These findings contribute an adversarial co-evolution framework for developing more sophisticated ad-aware generative search systems and robust ad classifiers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG对话系统 广告管理 广告分类器
相关文章