cs.AI updates on arXiv.org 07月02日
Physics-Informed Neural ODEs for Temporal Dynamics Modeling in Cardiac T1 Mapping
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用物理信息神经常微分方程的加速T1映射框架,可从稀疏基线图像中实现高精度T1估计,并有效解决传统方法的局限性。

arXiv:2507.00613v1 Announce Type: cross Abstract: Spin-lattice relaxation time ($T_1$) is an important biomarker in cardiac parametric mapping for characterizing myocardial tissue and diagnosing cardiomyopathies. Conventional Modified Look-Locker Inversion Recovery (MOLLI) acquires 11 breath-hold baseline images with interleaved rest periods to ensure mapping accuracy. However, prolonged scanning can be challenging for patients with poor breathholds, often leading to motion artifacts that degrade image quality. In addition, $T_1$ mapping requires voxel-wise nonlinear fitting to a signal recovery model involving an iterative estimation process. Recent studies have proposed deep-learning approaches for rapid $T_1$ mapping using shortened sequences to reduce acquisition time for patient comfort. Nevertheless, existing methods overlook important physics constraints, limiting interpretability and generalization. In this work, we present an accelerated, end-to-end $T_1$ mapping framework leveraging Physics-Informed Neural Ordinary Differential Equations (ODEs) to model temporal dynamics and address these challenges. Our method achieves high-accuracy $T_1$ estimation from a sparse subset of baseline images and ensures efficient null index estimation at test time. Specifically, we develop a continuous-time LSTM-ODE model to enable selective Look-Locker (LL) data acquisition with arbitrary time lags. Experimental results show superior performance in $T_1$ estimation for both native and post-contrast sequences and demonstrate the strong benefit of our physics-based formulation over direct data-driven $T_1$ priors.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

T1映射 物理信息神经常微分方程 加速框架 心肌组织 深度学习
相关文章