cs.AI updates on arXiv.org 06月30日
A Practical Approach to Power Saving in Hearables Using Sub-Nyquist Sampling with Bandwidth Extension
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SUBARU技术,通过降低采样频率和位分辨率,以及引入虚拟判别器,有效降低功耗并提升语音增强效果,实现低功耗可穿戴设备的语音识别与增强。

arXiv:2506.22321v1 Announce Type: cross Abstract: Hearables are wearable computers that are worn on the ear. Bone conduction microphones (BCMs) are used with air conduction microphones (ACMs) in hearables as a supporting modality for multimodal speech enhancement (SE) in noisy conditions. However, existing works don't consider the following practical aspects for low-power implementations on hearables: (i) They do not explore how lowering the sampling frequencies and bit resolutions in analog-to-digital converters (ADCs) of hearables jointly impact low-power processing and multimodal SE in terms of speech quality and intelligibility. (ii) They don't discuss how GAN-like audio quality can be achieved without using actual GAN discriminators. And (iii) They don't process signals from ACMs/BCMs at sub-Nyquist sampling rate because, in their frameworks, they lack a wideband reconstruction methodology from their narrowband parts. We propose SUBARU (\textbf{Sub}-Nyquist \textbf{A}udio \textbf{R}esolution \textbf{U}psampling), which achieves the following: SUBARU (i) intentionally uses sub-Nyquist sampling and low bit resolution in ADCs, achieving a 3.31x reduction in power consumption; (ii) introduces novel multi-scale and multi-period virtual discriminators, which achieve GAN-like audio quality without using GANs' adversarial training; and (iii) achieves streaming operations on mobile platforms and SE in in-the-wild noisy conditions with an inference time of 1.74ms and a memory footprint of less than 13.77MB.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SUBARU技术 语音增强 可穿戴设备 低功耗 多模态
相关文章