学研君 2025-03-19 12:04 浙江
掌握这 100 个 Pandas 要点,数据处理不再愁!Pandas 常用于数据处理与分析,本文精心梳理了
掌握这 100 个 Pandas 要点,数据处理不再愁!
Pandas 常用于数据处理与分析,本文精心梳理了 100 个 Pandas 要点,助你驾驭各类数据任务。
1 Pandas基础
import pandas as pd导入Pandas库。pd.DataFrame()函数,将字典数据转化为 DataFrame 格式,便于数据处理与分析。pd.read_csv()将CSV文件中的数据加载到DataFrame中。df.head()和df.tail()查看DataFrame的前几行和最后几行。df.columns访问列名。df.index访问索引信息。df.describe()获取数值列的汇总统计信息。df.dtypes查看每列的数据类型。df.info()获取DataFrame的简洁摘要。df['column_name']选择单个列。df[['col1', 'col2']]选择多个列。df.loc[index_label]通过索引标签访问行。df.iloc[row_index]通过整数索引访问行。df.shape获取DataFrame的维度(行数,列数)。df.set_index('column_name')设置新的索引。df.reset_index()重置索引。df.rename(columns={'old_name': 'new_name'})重命名列。df.drop(columns=['col1', 'col2'])删除列。df.dropna()删除含有缺失值的行。df.fillna(value)用特定值填充缺失值。df.isnull()检查是否存在缺失值。2 数据操作
df['column'].apply()将函数应用于列的每个元素。df.groupby('column')按列对数据进行分组。sum()、mean()等函数对数据进行聚合。pd.pivot_table()创建透视表进行多级分组。df.sort_values('column')按列值对DataFrame进行排序。df.sort_index()按索引对DataFrame进行排序。pd.concat([df1, df2])垂直连接DataFrame。pd.merge()在指定列上合并DataFrame。pd.merge()和how参数执行类似SQL的连接操作。pd.concat([df1, df2], axis=1)合并具有相同索引的DataFrame。df['column'].replace(old_value, new_value)替换列中的值。pd.get_dummies(df['column'])创建虚拟变量。pd.cut()将数值数据划分为离散区间。df.applymap()将函数应用于DataFrame的每个元素。3 索引和选择
df.loc[]进行基于标签的索引。df.iloc[]进行基于整数的索引。df.ix[]进行混合标签和整数的索引(在最新版本中已弃用)。&(与)、|(或)和~(非)运算符连接多个条件。isin()根据值列表过滤DataFrame的行。between()根据值的范围过滤DataFrame的行。df.loc[]同时选择特定的行和列。df.select_dtypes()根据数据类型选择列。df.query('condition')通过表达式查询DataFrame。4 时间序列数据
pd.to_datetime(df['column'])将列转换为日期时间类型。df.set_index('column')将某列设置为索引。df.resample('frequency')对时间序列数据进行重采样。df.loc['YYYY-MM-DD']访问特定时间的元素。df['column'].diff()计算日期之间的时间差。df['column'].shift(periods)移动时间序列数据。rolling()对时间序列数据进行滚动窗口计算。dt访问器访问日期时间列的组件(例如,df['column'].dt.day)。groupby()和resample()执行基于时间的分组操作。5 数据清洗和预处理
df.drop_duplicates()删除重复行。df['column'].str.lower()将字符串转换为小写。df['column'].str.strip()去除字符串前后的空格。df['column'].replace({'old_val': 'new_val'})替换值。df.drop_duplicates(subset='column')删除特定列中具有重复值的行。6 使用Pandas进行可视化
df.plot()进行基本绘图。df.plot(x='col1', y='col2')绘制特定列之间的关系图。df.plot()后,使用Matplotlib函数自定义绘图。df.plot(kind='bar')创建条形图。df['column'].plot(kind='hist')创建直方图。df.boxplot(column='column')创建箱线图。7 使用Pandas进行文件输入/输出
df.to_csv('file.csv')将DataFrame保存为CSV文件。df.to_excel('file.xlsx')将DataFrame保存为Excel文件。pd.read_excel('file.xlsx')从Excel文件读取数据。pd.read_json('file.json')从JSON文件读取数据。df.to_json('file.json')将DataFrame保存为JSON文件。pd.read_sql('SELECT * FROM table', connection)从SQL数据库读取数据。8 高级主题
pd.MultiIndex.from_arrays()创建多级索引DataFrame。df.stack()和df.unstack()堆叠和展开多级索引的层级。pd.melt()将DataFrame从宽格式转换为长格式。swifter进行并行处理以加快操作速度。pd.options.display自定义显示选项。9 处理分类数据
df['column'].astype('category')将列转换为分类类型。df['column'].cat.codes访问分类代码。df['column'].cat.rename_categories(new_categories)重命名分类。10 自定义函数
groupby().apply()将函数应用于每个分组。df['column'].map()将自定义函数应用于每个元素。df.apply()按元素应用函数。11 重采样时间序列数据
df.resample('frequency')对时间序列数据进行重采样。sum()、mean()等。12 处理文本数据
str访问器访问字符串方法(例如,df['column'].str.lower())。str.contains()进行字符串匹配。str.extract()使用正则表达式提取信息。13 内存管理
df.memory_usage()分析内存使用情况。astype())减少内存使用。14 GroupBy操作
df.groupby(['col1', 'col2'])进行多级分组。agg()聚合多个函数。agg()对多个列应用多个函数。15 合并DataFrame
pd.concat()并设置axis=1水平合并DataFrame。pd.merge()基于公共列合并DataFrame。16 地理空间数据
geopandas结合Pandas处理地理空间数据。geopandas执行空间操作,如叠加和相交。geopandas.plot()可视化地理空间数据。这些技巧涵盖了Pandas的广泛功能,从基本的数据操作到处理时间序列、分类数据等的高级技术。在实际数据集上尝试这些技巧,有助于巩固你对Pandas及其功能的理解。
