Physics World 2024年12月16日
Laser beam casts a shadow in a ruby crystal
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

加拿大渥太华大学物理学家Jeff Lundeen及其同事发现,当激光束穿过高度非线性介质并被另一光源照射时,光子(无质量的光粒子)可以相互作用并产生阴影。这一反常现象的产生归因于红宝石晶体中特殊的“反向饱和吸收”特性,即在高光强度下吸收更多光。实验中,绿激光束穿过红宝石晶体,侧面用蓝光照射,绿光束在白纸上投下阴影。该研究不仅对基础科学具有重要意义,还可能应用于激光制造和成像领域。

🔬光子通常不会相互作用,但当激光束通过特殊介质时,会发生反常现象,产生阴影。实验中,绿激光束穿过红宝石晶体,并受到蓝光照射,产生了肉眼可见的阴影。

💎红宝石晶体中的铬原子杂质使其具有特殊的“反向饱和吸收”特性。当绿光照射时,电子从基态跃迁到激发态,然后吸收蓝光跃迁到更高激发态,从而导致绿光区域吸收更多蓝光,形成阴影。

🔦该激光阴影与普通阴影类似,其形状跟随绿激光束,并符合表面的轮廓。实验还验证了阴影的暗度会随着绿激光束强度的增加而增加。阴影的最大对比度达到了22%,与晴天的普通阴影相似。

⚛️研究人员解释说,光波实际上由光和物质组成的混合粒子“极化子”构成。阴影的形成并非完全由无质量的光子造成,而是极化子的物质部分(具有质量)在起作用。此研究能帮助我们更好地理解光与物质的相互作用。

Particles of light – photons – are massless, so they normally pass right through each other. This generally means they can’t cast a shadow. In a new work, however, physicist Jeff Lundeen of the University of Ottawa, Canada and colleagues found that this counterintuitive behaviour can, in fact, happen when a laser beam is illuminated by another light source as it passes through a highly nonlinear medium. As well as being important for basic science, the work could have applications in laser fabrication and imaging.

The light-shadow experiment began when physicists led by Raphael Akel Abrahao sent a high-power beam of green laser light through a cube-shaped ruby crystal. They then illuminated this beam from the side with blue light and observed that the beam cast a shadow on a piece of white paper. This shadow extended through an entire face of the crystal. Writing in Optica, they note that “under ordinary circumstances, photons do not interact with each other, much less block each other as needed for a shadow.” What was going on?

Photon-photon interactions

The answer, they explain, boils down to some unusual photon-photon interactions that take place in media that absorb light in a highly nonlinear way. While several materials fit this basic description, most become saturated at high laser intensities. This means they become more transparent in the presence of a strong laser field, producing an “anti-shadow” that is even brighter than the background – the opposite of what the team was looking for.

What they needed, instead, was a material that absorbs more light at higher optical intensities. Such behaviour is known as “reverse saturation of absorption” or “saturable transmission”, and it only occurs if four conditions are met. Firstly, the light-absorbing system needs to have two electronic energy levels: a ground state and an excited state. Secondly, the transition from the ground to the excited state must be less strong (technically, it must have a smaller cross-section) than the transition from the first exited state to a higher excited state. Thirdly, after the material absorbs light, neither the first nor the second excited states should decay back to other levels when the light is re-emitted. Finally, the incident light should only saturate the first transition.

That might sound like a tall order, but it turns out that ruby fits the bill. Ruby is an aluminium oxide crystal that contains impurities of chromium atoms. These impurities distort its crystal lattice and give it its familiar red colour. When green laser light (532 nm) is applied to ruby, it drives an electronic transition from the ground state (denoted 4A2) to an excited state 4T2. This excited state then decays rapidly via phonons (vibrations of the crystal lattice) to the 2E state.

At this point, the electrons absorb blue light (450 nm) and transition from 2E to a different excited state, denoted 2T1. While electrons in the 4A2 state could, in principle, absorb blue light directly, without any intermediate step, the absorption cross-section of the transition from 2E to 2T1 is larger, Abrahao explains.

The result is that in the presence of the green laser beam, the ruby absorbs more of the illuminating blue light. This leaves behind a lower-optical-intensity region of blue illumination within the ruby – in other words, the green laser beam’s shadow.

Shadow behaves like an ordinary shadow

This laser shadow behaves like an ordinary shadow in many respects. It follows the shape of the object (the green laser beam) and conforms to the contours of the surfaces it falls on. The team also developed a theoretical model that predicts that the darkness of the shadow will increase as a function of the power of the green laser beam. In their experiment, the maximum contrast was 22% – a figure that Abrahao says is similar to a typical shadow on a sunny day. He adds that it could be increased in the future.

Lundeen offers another way of looking at the team’s experiment. “Fundamentally, a light wave is actually composed of a hybrid particle made up of light and matter, called a polariton,” he explains. “When light travels in a glass or crystal, both aspects of the polariton are important and, for example, explain why the wave travels more slowly in these media than in vacuum. In the absence of either part of the polariton, either the photon or atom, there would be no shadow.”

Strictly speaking, it is therefore not massless light that is creating the shadow, but the material component of the polariton, which has mass, adds Abrahao, who is now a postdoctoral researcher at Brookhaven National Laboratory in the US.

As well as helping us to better understand light-matter interactions, Abrahao tells Physics World that the experiment “could also come in useful in any device in which we need to control the transmission of a laser beam with anther laser beam”. The team now plans to search for other materials and combinations of wavelengths that might produce a similar “laser shadow” effect.

The post Laser beam casts a shadow in a ruby crystal appeared first on Physics World.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

激光阴影 红宝石晶体 光子相互作用 反向饱和吸收 极化子
相关文章